[1]张梦龙,张悦,徐松林.张梦龙,张悦,徐松林[J].固体火箭技术,2018,41(06):715-720.
 ZHANG Menglong,ZHANG Yue,XU Songlin.Influence of chamber structure on regression rate of solid fuel in N2O/HTPB hybrid rocket motor[J].Journal of Solid Rocket Technology,2018,41(06):715-720.
点击复制

张梦龙,张悦,徐松林

参考文献/References:

[1]Tsohas J,Appel B,Rettenmaier A,et al.Development and launch of the purdue hybrid rocket technology demonstrator[R].AIAA 2009-4842.

[2]George,Sutton P.Rocket Propulsion Elements[M].John Wiley and Sons New York,1992.
[3]CAI Guobiao,TIAN Hui.Numerical simulation of the operation process of a hybrid rocker motor[R].AIAA 2006-4506.
[4]孙得川,杜新,汪亮.PE燃料热解过程对H2O2PE固液发动机点火的影响[J].固体火箭技术,2006,29(5):346-349.SUN Dechuan,DU Xin,WANG Liang.Influence of PE fuel pyrolysis on ignition of H2O2PE hybrid rocket motor[J].Journal of Solid Rocket Technology,2006,29(5):346-349.
[5]武渊,何国强,杨玉新.氧化剂质量通量对固液火箭发动机中固体燃料退移速率的影响[J].固体火箭技术,2009,32(4):383-387.WU Yuan,HE Guoqiang,YANG Yuxin.Influence of mass flux of oxidizer on regression rate of solid fuel in hybrid rocket motors[J].Journal of Solid Rocket Technology,2009,32(4):383-387.
[6]Smoot L D,Price C F.Pressure dependence of hybrid fuel regression rates[J].AIAA,1967,5(1):102-106.
[7]Martin J C,Kenneth K K,Arie Peretz,et al.Heat flux and internal ballistic characterization of a hybrid rocket motor analog[R].AIAA 97-3080.
[8]Kline K R,Smith K W,Schmidt E E,et al.Hybrid rocket motor using a turbopump to pressurize a liquid propellant stituent[P].US,Patent 6640536,2003-11-04.
[9]Kline K R,Smith K W.Hybrid rocket motor having a precombustion chamber[P].US,Patent 6679049,2004-01-20.
[10]孙得川,张梦龙.基于燃面耦合传热的固液发动机内流场模拟方法[J].固体火箭技术,2015,38(2):208-213.SUN Dechuan,ZHANG Menglong.Simulation method for hybrid rocket motor based on thermal coupling at burning surface[J].Journal of Solid Rocket Technology,2015,38(2):208-213.
[11]孙得川,王博,夏广庆.流动参数对固液发动机燃料退移速率的影响[J].固体火箭技术,2013,36(4):496-499.SUN Dechuan,WANG Bo,XIA Guangqing.Influence of inlet velocity and fuel geometry on regression rate of solid fuel in hybrid rocket motor[J].Journal of Solid Rocket Technology,2013,36(4):496-499.
[12]Martin J Chiaverini,Nadir Serin,David K Johnson,et al.Thermal pyrolysis and combustion of HTPB-based solid fuels for hybrid rocket motor applications[R].AIAA 96-2845.
[13]Martin J Chiaverini,George C Heating,Lu Yeucherng,et al.Pyrolysis behavior of hybrid rocket solid fuels under rapid heating conditions[R].AIAA 97-3078.
[14]Venkateswaran S,Merkle C L.Size scale-up in hybrid rocket motors[R].AIAA 96-0647.

相似文献/References:

[1]陈灏,胡春波,孙得川,等.固体燃料热分解特性分析[J].固体火箭技术,2008,(1):69.
[2]武渊,何国强,杨玉新.氧化剂质量通量对固液火箭发动机中固体燃料退移速率的影响[J].固体火箭技术,2009,(04):383.
[3]张研,汪亮,孙得川,等.固液火箭发动机燃烧稳定性试验[J].固体火箭技术,2010,(03):265.
[4]夏强,武晓松,陈志刚,等.PMMA在固体燃料冲压发动机中燃烧特性的数值模拟[J].固体火箭技术,2011,(01):43.
[5]李新田,曾鹏,田辉,等.H2O2/HTPB缩比固液火箭发动机药柱燃速试验研究[J].固体火箭技术,2011,(04):457.
[6]吴俊峰,李新田,田辉,等.固液火箭发动机推进剂组合能量特性分析[J].固体火箭技术,2013,(02):225.
[7]孙得川,王博,夏广庆.流动参数对固液发动机燃料退移速率的影响[J].固体火箭技术,2013,(04):496.
[8]王鹏程,朱浩,蔡国飙.面向成本的固液火箭发动机方案设计优化[J].固体火箭技术,2017,40(05):537.[doi:10.7673/j.issn.1006-2793.2017.05.001]
[9]孙得川,张梦龙.基于燃面耦合传热的固液发动机内流场模拟方法[J].固体火箭技术,2015,(02):208.

更新日期/Last Update: 2019-01-02
PDF下载 分享