[1]李琬祺,雷虎民,张朋飞,等.带攻击角约束的自适应STA有限时间滑模导引律[J].固体火箭技术,2019,42(02):253-260.
 LI Wanqi,LEI Humin,ZHANG Pengfei,et al.Adaptive STA finite time sliding mode guidance law with attack angle constraint[J].Journal of Solid Rocket Technology,2019,42(02):253-260.
点击复制

带攻击角约束的自适应STA有限时间滑模导引律

参考文献/References:

[1]孙未蒙.空地制导武器多约束条件下的制导律设计[D].长沙:国防科技大学,2008.SUN Weimeng.Research on guidance law design with terminal impact angle constraints in air-to-surface guided weapon [D].Changsha:National University of Defense Technology,2008.[2]李庆春,张文生,韩刚.终端约束条件下末制导律研究综述[J].控制理论与应用,2016,33(1):1-12.LI Qingchun,ZHANG Wensheng,HAN Gang. Review of terminal guidance law with terminal constraints[J].Control Theory & Applications, 2016,33(1):1-12.[3]熊少锋,王卫红,刘晓东,等.考虑导弹自动驾驶仪动态特性的带攻击角度约束制导律[J].控制与决策,2015,30(4):585-592.XIONG Shaofeng,WANG Weihong,LIU Xiaodong,et al. Impact angle guidance law considering missile’s dynamics of autopilot[J].Control and Decision,2015,30(4):585-592.[4]Kim M,Grider K V.Terminal guidance for lmpact attitude angle constrained flight trajectories[J].IEEE Transactions on Aerospace and Electronic Systems,1973,9(6):852-859.[5]熊少锋,王卫红,王森.带攻击角度约束的非奇异快速终端滑模制导律[J].控制理论与应用,2014,31(3):269-278.XIONG S F,WANG W H,WANG S. Nonsingular fast terminal sliding-mode guidance with intercept angle constraint[J]. Control Theory and Applications,2014,31(3):269-278.[6]赵斌,周军,卢晓东,等.考虑终端角度约束的自适应积分滑模制导律[J].控制与决策,2017,32(11):1966-1972.ZHAO B,ZHOU J,LU X D,et al. Adaptive integral sliding mode guidance law considering impact angle constraint[J]. Control and Decision, 2017, 32(11):1966-1972.[7]周慧波.基于有限时间和滑模理论的导引律及多导弹协同制导研究[D].哈尔滨:哈尔滨工业大学,2015.[8]HE Shaoming,WANG Jiang,LIN Defu.Composite guidance laws using higher order sliding mode differentiator and disturbance observer[J].Proceedings of the Institution of Mechanical Engineers,PartG:Journal of Aerospace Engineering,2015,229(13),2397-2415. [9]HE Shaoming,LIN Defu,WANG Jiang.Robust terminal angle constraint guidance law with autopilot lag for intercepting maneuvering targets[J].Nonlinear Dynamic,2015,81:881-892.[10]王斌,雷虎民,李炯,等.基于NHDO的机动目标拦截攻击角度约束导引律[J].固体火箭技术,2017,40(4):517-524.WANG Bin,LEI Humin,LI Jiong,et al.NHDO Based impact angle control guidance law for maneuvering target[J].Journal of Solid Rocket Technology,2017,40(4):517-524.[11]Manchester I R,Savkin A V.Circular navigation guidance law for precision missile/target engagements[J].Journal of Guidance,Control and Dynamic,2006,29(2):314-320.[12]GU W,YU J,ZHANG R.A three-dimensional missile guidance law with angle constraint based on sliding mode control[C].Proc.of the IEEE International Coference on Control and Automation,2007:299-302.[13]舒燕军,唐硕.基于自适应反演滑模的末制导律设计[J].飞行力学,2012,30(2):163-166.SHU Y J,TANG S.Guidance law design based on adaptive backstepping sliding mode control[J]. Flight Dynamics, 2012, 30(2): 163-166.[14]王华吉,雷虎民,张旭,等.带扩张观测器的三维有限时间收敛导引律[J].国防科技大学学报,2017,39(6):88-97.WANG Huaji,LEI Humin,ZHANG Xu et al.Three-dimensional finite time convergence guidance law with extended stste observer[J].Journal of National University of Defense Technology,2017,39(6):88-97.[15]曲萍萍,周荻.考虑导弹自动驾驶仪二阶动态特性的导引律[J].系统工程与电子技术,2011,33(10):2263-2267.QU P P,ZHOU D.Guidance law incorporating second-order dynamics of missile autopilots[J].Systems Engineering and Electronics, 2011,33(10):2263-2267.[16]Shkolnikov Y,Shkolnikov L,Levant A.Guidance and control of missile interceptor using second-order sliding modes [J].IEEE Transaction on Aerospace and Electronic Systems,2009,45(1):110-124.[17]张尧,郭杰,唐胜景.基于扩张状态观测器的导弹滑模制导律[J].北京航空航天大学学报,2015,41(2):342-350.ZHANG Y,GUO J, TANG S J.Missile sliding mode guidance law based on extended state observer[J].Journal of Beijing University of Aerospace and Astronautics,2015,41(2):342-350.[18]张运喜.有限时间收敛滑模制导律研究[D].天津:南开大学,2013.

相似文献/References:

[1]王斌,雷虎民,李炯,等.基于NHDO的机动目标拦截攻击角度约束导引律[J].固体火箭技术,2017,40(04):517.[doi:10.7673/j.issn.1006-2793.2017.04.021]
 [J].Journal of Solid Rocket Technology,2017,40(02):517.[doi:10.7673/j.issn.1006-2793.2017.04.021]

更新日期/Last Update: 2019-05-06
PDF下载 分享