[1]申依林,任震,李军强,等.考虑应变率和温度响应的少烟NEPE推进剂粘弹性本构模型[J].固体火箭技术,2019,42(03):314-321.[doi:10.7673/j.issn.1006-2793.2019.03.008]
 SHEN Yilin,REN Zhen,LI Junqiang,et al.A viscoelastic constitutive model of low smoke NEPE propellant considering strain rate and temperature response[J].Journal of Solid Rocket Technology,2019,42(03):314-321.[doi:10.7673/j.issn.1006-2793.2019.03.008]
点击复制

考虑应变率和温度响应的少烟NEPE推进剂粘弹性本构模型

参考文献/References:

[1]Yim Y J,Jang M W,Park E Y,et al.Infrared irradiance reduction in minimum smoke propellants by addition of potassium salt[J].Propellants,Explosives,Pyrotechnics,2015,40(1):74-80.[2]张伟,谢五喜,樊学忠,等.纳米铝粉对少烟NEPE推进剂燃烧性能的影响[J].固体火箭技术,2014,37(4):516-520. ZHANG Wei,XIE Wuxi,FAN Xuezhong,et al.Effects of nano-aluminum on combustion characteristic of low smoke NEPE propellants[J].Journal of Solid Rocket Technology,2014,37(4):516-520.[3]Mooney R.A theory of large elastic deformation[J].Journal of applied physics,1940,240:582-592.[4]Rivlin R S.Large elastic deformation of isotropic materials:Ⅰ.Fundation concepts,Ⅱ.Some uniqueness theories for pure homogeneous deformations[J].Philosophical Transactions of the Royal Society of London.Series A,1948,240:459-508.[5]Yeoh O H.Some forms of the strain energy function for rubber[J].Rubber Chemistry and Technology,1993,66(5):754-771.[6]Renaud C,Cros J M,Feng Z Q,et al.The Yeoh model applied to the modeling of large deformation contact/impact problems[J].International Journal of Impact Engineering,2009,36(5):659-666.[7]Gajewski M,Szczerba R,Jemioo S.Modelling of elastomeric bearings with application of Yeoh hyperelastic material model[J].Procedia Engineering,2015,111:220-227.[8]Ogden R W.Large deformation isotropic elasticityon the correlation of theory and experiment for incompressible rubberlike solids[J].Proceedings of the Royal Society of London,1972,326(1567):565-584.[9]封涛,许进升,范兴贵,等.考虑初始缺陷的HTPB推进剂粘超弹本构模型[J].含能材料,2018,26(4):316-322.FENG Tao,XU Jinsheng,FAN Xinggui,et al.Viscohyperelastic constitutive model of HTPB propellant considering initial defects[J].Chinese Journal of Energetic Materials,2018,26(4):316-322. [10]Villar L D,Rezende L C.Time-temperature superposition principle applied to thermally aged composite propellant[C]//AIAA/SEA/ASEE Joint Propulsion Conference.Orlando,FL,2013.[11]石增强,刘朝丰,阳建红.一种改进的R-L分数阶导数定义在固体推进剂粘弹性本构模型中的应用[J].应用力学学报,2009,26(1):168-171.SHI Zengqiang,LIU Chaofeng,YANG Jianhong.Modified Riemann-Liouville fractional order derivative definition in solid propellant viscoelasticity constitutive model[J].Chinese Journal of Applied Mechanics,2009,26(1):168-171.[12]胡少青.NEPE推进剂的粘超弹本构模型及其应用研究[D].南京:南京理工大学,2015.HU Shaoqing.A viscohyperelastic constitutive model for NEPE propellant and its application[D].Nanjing:Nanjing University of Science and Technology,2015.[13]Schapery R A.On the characterization of nonlinear viscoelastic materials[J].Polymer Engineering & Science,1969,9(4):295-310.[14]朱兆祥,徐大本,王立礼.环氧树脂在高应变率下的热粘弹性本构方程和时温等效性[J].宁波大学学报,1988,1(1):58-68.ZHU Zhaoxiang,XU Daben,WANG Lili.Thermo-viscoelastic constitutive equation and time-temperature equivalence relation of epoxy resin under high strain rate[J].Journal of Ningbo University,1988,1(1):58-68.[15]Fukuhara M,Sampei A.Low-temperature elastic moduli and internal dilational and shear friction of polymethyl methacrylate[J].Journal of Polymer Science Part B:Polymer Physics,1995,33(12):1847-1850.[16]Feng G,Ngan A H W.Effects of creep and thermal drift on modulus measurement using depth-sensing indentation[J].Journal of Materials Research,2002,17(3):660-668.[17]Ngan A H W,Tang B.Viscoelastic effects during unloading in depth-sensing indentation[J].Journal of Materials Research,2002,17(10):2604-2610.[18]常新龙,赖建伟,张晓军,等.HTPB推进剂高应变率粘弹性本构模型研究[J].推进技术,2014,35(1):123-127. CHANG Xinlong,LAI Jianwei,ZHANG Xiaojun,et al.High strain-rate viscoelastic constitutive model for HTPB propellant[J].Journal of Propulsion Technology,2014,35(1):123-127.[19]张君发.宽泛应变率下NEPE推进剂热粘超弹性本构模型研究[D].南京:南京理工大学,2014.ZHANG Junfa.Research on the thermo-visco-hyperelastic constitutive model of NEPE propellant over a large range of strain rates[D].Nanjing:Nanjing University of Science and Technology,2014.

相似文献/References:

[1]唐国金,邓斌,申志彬.基于推进剂复杂本构模型的药柱结构分析模块开发[J].固体火箭技术,2014,(03):336.
[2]仲健林,任杰,马大为,等.基于细观力学精确建模方法的自适应底座力学性能研究[J].固体火箭技术,2014,(03):400.

更新日期/Last Update: 2019-07-11
PDF下载 分享