[1]李尧,许进升,周长省,等.HTPB推进剂温度及率效应的累积损伤模型研究[J].固体火箭技术,2019,42(03):327-333.[doi:10.7673/j.issn.1006-2793.2019.03.010]
 LI Yao,XU Jinsheng,ZHOU Changsheng,et al.Rate effects and temperature dependent accumulative damage for HTPB propellant[J].Journal of Solid Rocket Technology,2019,42(03):327-333.[doi:10.7673/j.issn.1006-2793.2019.03.010]
点击复制

HTPB推进剂温度及率效应的累积损伤模型研究

参考文献/References:

[1]侯晓,付鹏,武渊.固体火箭发动机能量管理技术及其新进展[J].固体火箭技术,2017,40(1):1-6.HOU Xiao,FU Peng,WU Yuan.Energy management technology of SRM and its development[J].Journal of Solid Rocket Technology,2017,40(1):1-6. [2]陈汝训,刘铭初,李志明,等.固体火箭发动机设计与研究[M].北京:中国宇航出版社,1991.CHEN Ruxun,LIU Mingchu,LI Zhiming,et al.Design and research of solid rocket engine[M].Beijing:China Astronautic Publishing House,1991.[3]韩小云.固体推进剂燃烧断裂研究和固体火箭发动机结构完整性分析[D].长沙:国防科技大学,1999.HAN Xiaoyun.Study on combustion fracture of solid propellant and structural integrity analysis of solid rocket engine [D].Changsha:National University of Defense Technology,1999.[4]屈文忠.国产HTPB复合推进剂裂纹扩展特性的实验研究[J].推进技术,1994,10(6):88-92.QU Wenzhong.Experimental research on crack growth behavior in HTPB composite propellant[J].Journal of Propulsion Technology,1994,10(6):88-92.[5]王革,张莹,李冬冬,等.大长径比固体火箭发动机工作过程中压力响应的数值研究[J].固体火箭技术,2018,41(6):702-709.[JP2]WANG Ge,ZHANG Ying,LI Dongdong,et al.Numerical analysis on pressure response of SRM with large aspect ratio[J].Journal of Solid Rocket Technology,2018,41(6):702-709.[6]吴丰军,彭松,池旭辉.NEPE推进剂/衬层粘接界面细观力学性能/结构研究[J].固体火箭技术,2010,33(1):81-85.WU Fengjun,PENG Song,CHI Xuhui.Study on microcosmic mechanics performance/structure of NEPE propellant/liner bonded interface[J].Journal of Solid Rocket Technology,2010,33(1):81-85.[7]DeLuca L T,Galfetti L,Maggi F,et al.Characterization of HTPBbased solid fuel formulations:performance,mechanical properties and pollution[J].Acta Astronautica,2013,92(2):150-162.[8]崔立堃,叶伟.固体火箭发动机羽流场波系结构及特性数值计算[J].兵器装备工程学报,2018,39(12):46-50.[JP4]CUI Likun,YE Wei.Numerical simulation of the wave structures and characteristics about solid rocket motor plume[J].Journal of Ordnance Equipment Engineering,2018,39(12):46-50.[9]BILLS K W.Observations on the linear cumulative damage concept[C]//Proceedings of the JANNAF Structures and mechanical behavior subcommittee meeting.Chemical propulsion information agency publication,1980:57-59.[10]Laheru K L.Development of a generalized failure criterion for viscoelastic materials[J].Journal of propulsion and power,1992,8(4):756-759.[11]Miner M A.Cumulative damage in fatigue[J].ASME transactions,journal of applied mechanics,1945,162(12):159-164.[12]Duncan E J,Margetson J.A nonlinear viscoelastic theory for solid rocket propellant based on a cumulative damage approach[J].Propellants,Explosives,Pyrotechnics,1998,23(2):94-104.[13]Richard K Kunz.Characterization of solid propellant for linear cumulative damage modeling[R].AIAA 2009-5257.[14]阳建红.HTPB复合推进剂损伤理论和实验研究[D].西安:西安第二炮兵工程学院,1999.Yang Jianhong.Theoretical and experimental study on damage of HTPB composite propellant [D].Xi’an:The Second Artillery Engineering University,1999.[15]史佩,曲凯,张旭东.基于连续损伤模型的复合推进剂力学性能研究[J].海军航空工程学院学报,2010,25(6):662-666.SHI Pei,QU Kai,ZHANG Xudong.Research on mechanics performance of composite propellant with continuum damage mechanics[J].Journal of Naval Aeronautical Engineering Institute,2010,25(6):662-666.[16]李高春,董可海,张勇,等.环境温度作用下固体火箭发动机药柱的累积损伤规律[J].火炸药学报,2010,33(4):19-22.LI Gaochun,DONG Kehai,ZHANG Yong,et al.Cumulative damage rule of solid rocket motor grains under the influence of environmental temperature[J].Chinese Journal of Explosives & Propellants,2010,33(4):19-22.[17]孟红磊,赵秀超,鞠玉涛,等.基于累积损伤的双基推进剂强度准则及实验[J].推进技术,2011,32(1):109-112.MENG Honglei,ZHAO Xiuchao,JU Yutao,et al.Strength criterion based on accumulative damagefor double-base propellant and experiment[J].Journal of Propulsion Technology,2011,32(1):109-112. [18]韩龙,陈雄,赵亚楠,等.基于累积损伤模型的NEPE推进剂温度及率相关破坏准则研究[J].推进技术,2015,36(12):1895-1900.HAN Long,CHEN Xiong,ZHAO Yanan,et al.Rate and temperature dependent strength criterion based on accumulative damage for NEPE propellant[J].Journal of Propulsion Technology,2015,36(12):1895-1900.[19]庞维强,De Luca T Luigi,樊学忠,等.高活性铝粉的改性及在化学推进剂中燃烧团聚研究进展[J].固体火箭技术,2019,42(1):42-53.PANG Weiqiang,De Luca T Luigi,FAN Xuezhong,et al.Progress on modification of high active aluminum powder and combustion agglomeration in chemical propellants[J].Journal of Solid Rocket Technology,2019,42(1):42-53.

相似文献/References:

[1]刘晶如,罗运军.含储氢合金的丁羟推进剂固化气孔问题研究[J].固体火箭技术,2011,(01):92.
[2]王蓬勃,王政时,鞠玉涛,等.双基推进剂高应变率型本构模型的实验研究[J].固体火箭技术,2012,(01):69.
[3]侯晓,秦谊,何高让,等.应变率对复合材料壳体外压性能的影响[J].固体火箭技术,2012,(06):799.
[4]张晓军,常新龙,赖建伟,等.HTPB推进剂低温拉伸/压缩力学性能对比[J].固体火箭技术,2013,(06):771.
[5]陈晓明,郑林,赵瑛.HTPB推进剂模压成型工艺探索[J].固体火箭技术,2013,(06):795.
[6]常新龙,龙兵,胡宽,等.推进剂低温裂纹扩展特性试验研究[J].固体火箭技术,2015,(01):86.
[7]龙兵,常新龙,陈刚,等.HTPB推进剂裂纹起裂J积分研究[J].固体火箭技术,2015,(03):367.
[8]张晓,郑坚,彭威,等.HTPB推进剂力学性能散布与确定变量相关性研究[J].固体火箭技术,2015,(03):378.
[9]张晓,郑坚,彭威,等.复合固体推进剂粘弹性应变能及非线性本构模型[J].固体火箭技术,2015,(06):827.
[10]李金飞,黄卫东,李高春,等.振动载荷和定应变对HTPB推进剂基体/颗粒粘接界面影响[J].固体火箭技术,2016,(04):503.
[11]赖建伟,常新龙,龙兵,等.低温和应变率对HTPB推进剂压缩力学性能影响[J].固体火箭技术,2012,(06):792.
[12]周海霞,李世鹏,谢侃,等.HTPB推进剂宽泛应变率下粘弹性本构模型研究[J].固体火箭技术,2017,40(03):325.[doi:10.7673/j.issn.1006-2793.2017.03.010]
 [J].Journal of Solid Rocket Technology,2017,40(03):325.[doi:10.7673/j.issn.1006-2793.2017.03.010]

更新日期/Last Update: 2019-07-11
PDF下载 分享