[1]申志彬,张亮,职世君.固体推进剂宽温-气体围压试验系统设计与试验[J].固体火箭技术,2019,42(03):340-344.[doi:10.7673/j.issn.1006-2793.2019.03.012]
 SHEN Zhibin,ZHANG Liang,ZHI Shijun.Wide temperature range-gas ambient pressure test system and experiments for solid propellant[J].Journal of Solid Rocket Technology,2019,42(03):340-344.[doi:10.7673/j.issn.1006-2793.2019.03.012]
点击复制

固体推进剂宽温-气体围压试验系统设计与试验

参考文献/References:

[1]俞茂宏.强度理论百年总结 [J].力学进展,2004,34(4):529-560.YU M H.Advances in strength theories for materials under complex stress state in the 20th century[J].Advances in Mechanics,2004,34(4):529-560.[2]Traissas Y,Ninous J,Neviere R,et al.Mechanical behavior of a solid composite propellant during motor ignition[J].Rubber Chemistry and Technology,1994,68:146-157.[3]阿兰.达维纳著.固体火箭推进剂技术[M].张德雄,姚润森译.北京:宇航出版社,1997.[4]züpek S Constitutive equations for solid propellants[D].Austin:University of Texas at Austin,1997.[5]Tun B,züpek S.Constitutive modeling of solid propellants for three dimensional nonlinear finite element analysis[J].Aerospace Scienceand Technology,2017,69:290-297. [6]Tun B,züpek S.Implementation and validation of a three dimensional damaging finite strain viscoelastic model[J].International Journal of Solids and Structures,2016,102-103:275-285.[7]何铁山,张劲民.环境压强对固体推进剂力学行为的影响[J].推进技术,2005,26(4):367-370.HE T S,ZHANG J M.Effect of environment pressure on mechanical properties of solid propellant[J].Journal of Propulsion Technology,2005,26(4):367-370.[8]王小英,何铁山,张林,等.环境压强对NEPE 推进剂单向拉伸力学行为的影响[J].固体火箭技术,2017,40(4):466-470.WANG X Y,HE T S,ZHANG L,et al.Effect of environment pressure on the uniaxial tensile mechanical properties of NEPE solid propellants[J].Journal of Solid Rocket Technology,2017,40(4):466-470.[9]沙宝林,侯晓.压力环境下固体推进剂含损伤的统一本构研究[J].强度与环境,2012,39(3):13-18.SHA B L,HOU X.Unified constitutive modeling of solid propellant materials with evolving damage subjected to pressure loading[J].Structure & Environment Engineering,2012,39(3):13-18.[10]张建彬.双基推进剂屈服准则及粘弹塑性本构模型研究[D].南京:南京理工大学,2013.ZHANG J B.Study on yield criteria and viscoelastoplastic constitutive model of the double-base propellant[D].Nanjing:Nanjing University of Science & Technology,2013.[11]GJB 770B—2005,火药试验方法[S].国防科工委军标出版发行部,2005.GJB 770B—2005,Test method of propellant[S].Military Standard Publishing and Distribution Department of National Defense Science and Technology Commission,2005.[12]马浩,职世君,申志彬,等.HTPB 推进剂“脱湿点”及快慢组合拉伸研究[J].固体火箭技术,2017,40(6):741-745.MAO H,ZHI S J,SHEN Z B,et al.Study of dewetting points and composite rate tensile for HTPB propellants[J].Journal of Solid Rocket Technology,2017,40(6):741-745.[13]陈汝训.固体火箭发动机设计与研究[M].北京:宇航出版社,2005.

相似文献/References:

[1]刘晶如,罗运军.含储氢合金的丁羟推进剂固化气孔问题研究[J].固体火箭技术,2011,(01):92.
[2]赖建伟,常新龙,龙兵,等.低温和应变率对HTPB推进剂压缩力学性能影响[J].固体火箭技术,2012,(06):792.
[3]张晓军,常新龙,赖建伟,等.HTPB推进剂低温拉伸/压缩力学性能对比[J].固体火箭技术,2013,(06):771.
[4]陈晓明,郑林,赵瑛.HTPB推进剂模压成型工艺探索[J].固体火箭技术,2013,(06):795.
[5]常新龙,龙兵,胡宽,等.推进剂低温裂纹扩展特性试验研究[J].固体火箭技术,2015,(01):86.
[6]龙兵,常新龙,陈刚,等.HTPB推进剂裂纹起裂J积分研究[J].固体火箭技术,2015,(03):367.
[7]张晓,郑坚,彭威,等.HTPB推进剂力学性能散布与确定变量相关性研究[J].固体火箭技术,2015,(03):378.
[8]张晓,郑坚,彭威,等.复合固体推进剂粘弹性应变能及非线性本构模型[J].固体火箭技术,2015,(06):827.
[9]李金飞,黄卫东,李高春,等.振动载荷和定应变对HTPB推进剂基体/颗粒粘接界面影响[J].固体火箭技术,2016,(04):503.
[10]杜永强,郑坚,彭威,等.基于修正Arrhenius活化能方法的HTPB推进剂贮存寿命预估[J].固体火箭技术,2017,40(01):81.[doi:10.7673/j.issn.1006-2793.2017.01.014]

更新日期/Last Update: 2019-07-11
PDF下载 分享