[1]王昕远,张亚俊,隋欣,等.基于红外光谱的HTPB推进剂老化机理[J].固体火箭技术,2019,42(04):471-475.
 WANG Xinyuan,ZHANG Yajun,SUI Xin,et al.Aging mechanism of HTPB propellant based on infrared spectrum[J].Journal of Solid Rocket Technology,2019,42(04):471-475.
点击复制

基于红外光谱的HTPB推进剂老化机理

参考文献/References:

[1]Thrasher D I.Structural service life estimate of a reduced smoke rocket motor[R].AIAA 81-1544.[2]Francis E C,Thompson R E.Bond stress transducer design for solid propellant rocket motor[R].AIAA 80-1278.[3]Slanghter J A.The use of reclaimed solid rocket propellant in commercial explosive[R].AIAA 95-3014.[4]Francis E C,Ford E F.Solid propellant flaw ballistic structural analysis[R].AIAA 84-1292.[5]Robert Feigley,Feng Jin,Jose Lorenzo,et al.Monitoring of chemical degradation in propellants using AOTF spectrometer[C]//Proceeding of SPIE.2004,96-103.[6]张兴高,张炜,朱慧,等.固体推进剂贮存老化研究进展[J].含能材料,2008,16(2):232-237.ZHANG Xinggao,ZHANG Wei,ZHU Hui,et al.Review on the aging of solid propellants[J].Chinese Journal of Energetic Materials,2008,16(2): 232-237.[7]罗善国,陈福泰,罗运军,等.推进剂组分对聚醚聚氨酯粘合剂热氧降解的影响(I)——硝酸酯增塑剂的影响[J].推进技术,1999,20(2):88-94.LUO Shanguo,CHEN Futai,LUO Yunjun,et al.Effect of propellant components on degradation of polyetherurethane binder (Ⅰ): Effects of energetic fillers and additives[J].Journal of Propulsion Technology,1999,20(3): 88-94.[8]罗善国,陈福泰,罗运军,等.推进剂组分对聚醚聚氨酯粘合剂热氧降解的影响(II)——固体填料和助剂的影响[J].推进技术,1999,20(2):88-94.LUO Shanguo,CHEN Futai,LUO Yunjun,et al.Effect of propellant components on degradation of polyetherurethane binder (II):Effects of energetic fillers and additives[J].Journal of Propulsion Technology,1999,20(3): 95-99.[9]国防科学技术委员会.火药试验方法:GJB 770B—2005 [S].2005.[10]翁诗甫,徐怡庄.傅里叶变换红外光谱分析[M].北京:化学工业出版社,2016.[11]徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展[J].光谱学与光谱分析,2000,20 (2):134-142.XU Guangtong,YUAN Hongfu,LU Wanzhen.Development of modern near infrared spectroscopic techniques and its applications[J].Spectroscopy and Spectral Analysis,2000,20(2): 134-142.[12]谭惠民.固体推进剂化学与技术[M].北京:北京理工大学出版社,2015.[13]Brill T B,Brush P J,Patil D G.Thermal decomposition of energetic materials 60 major reaction stages of a simulated burning surface of ammonium perchlorate[J].Combustion and Flame,1993,84: 70-76.

相似文献/References:

[1]李旭昌,焦剑,姚军燕,等.丁羟粘合剂体系化学结构与力学性能的相关性[J].固体火箭技术,2010,(03):307.
[2]刘晶如,罗运军.含储氢合金的丁羟推进剂固化气孔问题研究[J].固体火箭技术,2011,(01):92.
[3]赖建伟,常新龙,龙兵,等.低温和应变率对HTPB推进剂压缩力学性能影响[J].固体火箭技术,2012,(06):792.
[4]张晓军,常新龙,赖建伟,等.HTPB推进剂低温拉伸/压缩力学性能对比[J].固体火箭技术,2013,(06):771.
[5]陈晓明,郑林,赵瑛.HTPB推进剂模压成型工艺探索[J].固体火箭技术,2013,(06):795.
[6]常新龙,龙兵,胡宽,等.推进剂低温裂纹扩展特性试验研究[J].固体火箭技术,2015,(01):86.
[7]龙兵,常新龙,陈刚,等.HTPB推进剂裂纹起裂J积分研究[J].固体火箭技术,2015,(03):367.
[8]张晓,郑坚,彭威,等.HTPB推进剂力学性能散布与确定变量相关性研究[J].固体火箭技术,2015,(03):378.
[9]张晓,郑坚,彭威,等.复合固体推进剂粘弹性应变能及非线性本构模型[J].固体火箭技术,2015,(06):827.
[10]李金飞,黄卫东,李高春,等.振动载荷和定应变对HTPB推进剂基体/颗粒粘接界面影响[J].固体火箭技术,2016,(04):503.

更新日期/Last Update: 2019-08-29
PDF下载 分享